Lecture 12 Subtractors

Combinational Arithmetic Circuits

- Addition:
- Half Adder (HA).
- Full Adder (FA).
- Binary Adder
- BCD(Decimal) Adder.
- Subtraction:
- Half Subtractor.
- Full Subtractor.
- Multiplication:
- Binary Multipliers.
- Comparator:
- Magnitude Comparator.

Combinational Arithmetic Circuits

- Multiplexers
- Demultiplexers
- Encoders
- Decoders

Half Subtractor

- Subtracting a single-bit binary value Y from anther X (I.e. $X-Y$) produces a difference bit D and a borrow out bit B-out.
- This operation is called half subtraction and the circuit to realize it is called a half subtractor. $\quad \mathbf{D}(\mathbf{X}, \mathbf{Y})=(\mathbf{1 , 2})$
$\mathbf{D}=\mathbf{X}^{\prime} \mathbf{Y}+\mathbf{X Y}{ }^{\prime}$
Half Subtractor Truth Table

$$
\mathbf{D}=\mathbf{X} \oplus \mathbf{Y}
$$

$$
\begin{align*}
& \mathbf{B - o u t}(\mathbf{x}, \mathbf{y}, \mathbf{C - i n})= \tag{1}\\
& \mathbf{B - o u t}=\mathbf{X}^{\prime} \mathbf{Y}
\end{align*}
$$

Binary Arithmetic Operations Subtraction

- Two binary numbers are subtracted by subtracting each pair of bits together with borrowing, where needed.
- Subtraction Example:

$$
\begin{aligned}
& 001111100 \text { Borrow } \\
& \text { X } 229 \\
& \text { Y } \begin{array}{l}
\text { - } 46 \\
\hline 183
\end{array} \\
& -\quad \begin{array}{r}
00101110 \\
\hline 10110111
\end{array}
\end{aligned}
$$

Full Subtractor

- Subtracting two single-bit binary values, Y, B-in from a single-bit value X produces a difference bit D and a borrow out B-out bit. This is called full subtraction.

Full Subtractor Truth Table

Inputs			Outputs	
X	Y	B-in	D	B-out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
$\begin{aligned} & S(X, Y, C-i n)=(\mathbf{1 , 2 , 4 , 7)} \\ & C-\operatorname{lout}(\mathbf{x}, \mathbf{y}, \mathbf{C - i n})=(\mathbf{1 , 2 , 3 , 7)} \end{aligned}$				

Difference D

$S=X^{\prime} Y^{\prime}(B-i n)+X Y^{\prime}(B-i n)^{\prime}+X Y^{\prime}(B-i n)^{\prime}+X Y(B-i n)$
$\mathbf{S}=\mathbf{X} \oplus \mathbf{Y} \oplus(\mathbf{C}$-in)
Borrow B-out

\mathbf{B}-out $=X^{\prime} \mathbf{Y}+\mathbf{X}^{\prime}(\mathbf{B}-\mathrm{in})+\mathbf{Y}(\mathbf{B}-\mathrm{in})$

Full Subtractor Circuit Using AND-OR

B-in $\xrightarrow[\text { Bo-B-in }]{ }$,

Full Subtractor Circuit Using XOR

n-bit Subtractors

An n-bit subtracor used to subtract an n-bit number Y from another n-bit number X (i.e $\mathrm{X}-\mathrm{Y}$) can be built in one of two ways:

- By using n full subtractors and connecting them in series, creating a borrow ripple subtractor:
- Each borrow out B-out from a full subtractor at position j is connected to the borrow in B-in of the full subtracor at the higher position $\mathbf{j}+1$.
- By using an n-bit adder and n inverters:
- Find two's complement of Y by:
- Inverting all the bits of Y using the n inverters.
- Adding 1 by setting the carry in of the least significant position to 1
- The original subtraction ($\mathrm{X}-\mathrm{Y}$) now becomes an addition of X to two's complement of Y using the n-bit adder.

Binary Subtractor

- The subtrcation $\mathrm{A}-\mathrm{B}$ can be done by taking the 2's complement of B and adding it to A because $A-B=A+(-B)$
- It means if we use the inveters to make 1's complement of B (connecting each Bi to an inverter) and then add 1 to the least significant bit (by setting carry C 0 to 1) of binary adder, then we can make a binary subtractor.

4 bit 2's complement Subtractor

Adder Subtractor

- The addition and subtraction can be combined into one circuit with one common binary adder (see next slide).
- The mode M controls the operation. When $\mathrm{M}=0$ the circuit is an adder when $\mathrm{M}=1$ the circuit is subtractor. It can be don by using exclusive-OR for each Bi and M . Note that $1 \oplus \mathrm{x}=\mathrm{x}^{\prime}$ and $0 \oplus \mathrm{x}=$ x

Fig. 4-13 4-Bit Adder Subtractor

Checking Overflow

- Note that in the previous slide if the numbers considered to be signed V detects overflow. $\mathrm{V}=0$ means no overflow and $\mathrm{V}=1$ means the result is wrong because of overflow
- Overflow can be happened when adding two numbers of the same sign (both negative or positive) and result can not be shown with the available bits. It can be detected by observing the carry into sign bit and carry out of sign bit position. If these two carries are not equal an overflow occurred. That is why these two carries are applied to exclusive-OR gate to generate V .

Design example: 2x2-bit multiplier

6 lock diagram
and
truth table

2		$\mathcal{A} 1$	$\mathcal{B} 2$	$\mathcal{B} 1$	$\mathcal{P} 8$	$\mathcal{P} 4$	$\mathcal{P} 2$
0	0	0	0	0	$\mathcal{P} 1$		
		0	1	0	0	0	0
		1	0	0	0	0	0
		1	1	0	0	0	0
0	1	0	0	0	0	0	0
		0	1	0	0	0	0
		1	0	0	0	1	1
		1	1	0	0	1	0
1	0	0	0	0	0	0	0
		0	1	0	0	1	0
		1	0	0	1	0	0
		1	1	0	1	1	0
1	1	0	0	0	0	0	0
		0	1	0	0	1	1
		1	0	0	1	1	0
		1	1	1	0	0	1

4-variable K-map
for each of the 4
output functions

Design example: 2x2-bit multiplier (cont'd)

Assignment-12

- Explain half Subtractor and Full Subtractor.

